

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: X 60387

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Sixth Semester

Computer Science and Engineering CS 2351/10144 CS 601 –ARTIFICIAL INTELLIGENCE

(Common to Seventh Semester –Electronics and Instrumentation Engineering, Instrumentation and Control Engineering and Information Technology) (Regulations 2008/2010)

(Also common to PTCS 2351 – Artificial Intelligence for B.E. (Part-Time) Sixth Semester – CSE – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What are the four components to define a problem? Define them.
- 2. Define basic agent programs.
- 3. Define the first order definite clause.
- 4. State the expressiveness extension.
- 5. Give the elements of a search-based problem-solver with their meaning.
- 6. Define Contingency planning.
- 7. Define the Bayes rule.
- 8. What do you mean hybrid Bayesian network?
- 9. What are the methods of Statistical learning?
- 10. State the advantages of Inductive learning.

PART – B (5×16=80 Marks)

- 11. a) i) What is uninformed search? Explain depth first search with example. (8)
 - ii) Give the algorithm for recursive best first search.

(8)

(OR)

- b) i) Explain the nature of heuristics with an example. What is the effect of heuristic accuracy on performance? (8)
 - ii) Write a simple back tracking algorithm for constraint satisfaction problems. (8)

12. a) Explain the forward chaining process and efficient forward chaining with example. State its usage.

(OR)

- b) State and explain the various steps in knowledge engineering process.
- 13. a) Explain the concept behind partial order planning with suitable examples. (16)
 - b) Explain the use of planning graphs in providing better heuristic estimates with suitable examples. (16)
- 14. a) Explain the inferences in Bayesian network. (16)
 - b) State and compare Temporal model and Hidden Markov model. (16)
- 15. a) The following table consists of training data from an employee database.The data have been generalized. Let status be the class label attribute.Construct Decision tree from the given data

Department	\mathbf{Age}	Salary	Count	Status
Sales	3135	46K50K	30	Senior
Sales	26 30	26K30K	40	Junior
Sales	3135	31K35K	40	Junior
Systems	2125	46K50K	20	Junior
Systems	3135	66K70K	5	Senior
Systems	2630	46K50K	3	Junior
Systems	4145	66K70K	3	Senior
Marketing	3640	46K50K	10	Senior
Marketing	3135	41K45K	4	Junior
Secretary	4650	36K40K	4	Senior
Secretary	2630	26K30K	6	Junior
	(OR)			

b) Explain in detail about Active and Passive Reinforcement learning. (16)